miércoles, 23 de noviembre de 2011

PAPSA, empresa certificada por LEED.


Papsa es una empresa que se dedica a crear nuevos y eficientes espacios de trabajo que evolucionan en el tiempo. Esta certificada por LEED.

LEED (acrónimo de Leadership in Energy & Environmental Design) es un sistema de certificación de construcciones y edificaciones sostenibles, fue desarrollado por el Consejo de la Construcción Verde de Estados Unidos (US Green Building Council). Se compone de una serie de normas sobe la utilización de diferentes estrategias encaminadas a la sostenibilidad en edificios de todo tipo.

Descripción de la visita.

Las arquitectas Martha Sepúlveda y Fernanda Sepúlveda nos explicaron detalladamente acerca de cómo obtuvieron la certificación LEED. Comenzaron explicando el impacto ecológico de las construcciones. Los edificios son los mayores emisores de CO2, usando en su mayoría la energía eléctrica para mejorar el confort dentro de estos. Por lo tanto se está buscando reducir el consumo de energía.

LEED
Diseñar – Construir – Operar – Certificar.

Aparte ayudarle a la construcción a ser amigable con el medio ambiente es una gran inversión económica, es un buen negocio.

Cualquier construcción puede certificarse: casas, fraccionamientos, escuelas, nuevas construcciones, etc.

Hay diferentes estándares por los cuales puedes certificarte.
-          Green Building Design & Construction. (Construction and Major Renovations, Core & Shell Development, School and Retail New Construction)
-          Green Interior Design & Construction (Commercial Interiors, Retail Interiors, Green Building Operations & Maintenance, Existing Buildings: Operations & Maintenance).
-          Green Neighborhood Development (Neighborhood Development,)
-          Green Home Design and Construction (Homes)
En casi todos los estándares se tienen los mismos sistemas de evaluación solo que en cada uno se especializa en cada área. Las categorías son: sitio, agua, energía, materiales y calidad de aire. Al cumplir con cada categoría vas obteniendo puntos para obtener cierto nivel de certificación LEED.

Niveles de Certificación LEED.
-          Mínimo. 40 a 49 puntos: VERDE.
-          50 a 59 puntos: PLATA.
-          60 a 79 puntos: ORO.
-          Máximo. 80 o + puntos: PLATINO.

Proceso de certificación.
1.        Registro de proyecto online.
2.       Seguimiento y documentación.
3.       Aplicar para certificación.
Lograr créditos extras.
-          Selección del sitio. Rentar o comprar un edificio amigable con el medio ambiente.
-          Reducción de islas de calor. El edificio en donde se ubican las oficinas de PAPSA tiene más del 50% de los cajones de estacionamiento techados o subterráneos.
-          Conexión con la comunidad. Media milla a la redonda debe de haber todos los servicios básicos, para reducir el uso del automóvil.
-          Uso de energía en edificio: 36% aire acondicionado y 22% iluminación.
-          HVAC (aire acondicionado) bajo piso elevado de 40cm. Inyectan el aire de abajo hacia arriba, siguiendo su camino natural, se inyecta el aire a una temperatura de 19°C.
-           Reutilización de materiales del edificio, 40% o 60% de los componentes interiores no estructurales.
-          Manejo de desperdicios de construcción.: 40% a 75% donado o reciclado.
-          Reutilización de recursos alrededor de 5% o 10%.
-          Materiales: Placas de PET y Alfombre.
-          Campaña contaminación verde. PAPSA invita a escuelas o empresas a tours dentro de sus instalaciones para dar a conocer el programa LEED. Este método les ha ayudado mucho para ganar puntos extras.
-          Uso de sensores de movimiento para pagar las luces cuando no hay personas en el lugar.
-          Uso de productos reciclados y que sean reciclables.

Conclusiones.
A pesar de que esta certificación no tiene mucho tiempo en México, existen grandes posibilidades de que nuevas construcciones del país puedan certificarse fácilmente gracias a los diferentes estándares que utilizan. Hay grandes posibilidades para que México incremente las edificaciones certificadas LEED en un futuro cercano.

Bibliografía.
-          HAWORTH by PAPSA.
http://www.haworthbypapsa.com
-          U.S. Green Building Council / LEED.
http://www.usgbc.org/DisplayPage.aspx?CategoryID=19

By: Olga J Rojas


martes, 25 de octubre de 2011

Can Fully Glazed Curtain Walls Be Green?


Can Fully Glazed Curtainwalls Be Green?



Can Fully Glazed Curtainwalls Be Green?






                        Aquí esta la liga de la lectura: 



Encuentra mas lecturas e información en:

jueves, 20 de octubre de 2011

sábado, 15 de octubre de 2011

LA ARQUITECTURA VERNÁCULA DEL NORESTE DE MÉXICO







Aquí esta la liga de la lectura: 

Environment and Architecture


Environment and Architecture


http://www.unu.edu/unupress/unupbooks/80a01e/80A01E03.htm#Part%201


Effect of Climate on Architectural Form
Environment
Conscious Modification of the Microclimate
Trends in International Architecture


When an engineer designs a machine, a bridge, or a regulator, each line in his drawings is the result of a great accumulation of laws and principles from a dozen different mechanical sciences. He designs the machine to withstand a certain amount of strain and to do a particular job. In both these aspects he must consider and apply all that he has been taught in such fields as physics, dynamics, structural mechanics, and the resistance of materials, and must put into each line a whole library of expertise.


Similarly, when an architect designs a town or a building, every line is determined by the application of the same complex set of mechanical laws, with the addition of a whole collection of other sciences whose provinces are less well defined: the sciences that concern man in his environment and society. These sciences-sociology, economics, climatology, theory of architecture, aesthetics, and the study of culture in general-are no less important to the architect than are the mechanical sciences, for they are directly concerned with man, and it is for man that architecture exists.


The mechanical side of an architect's work-ensuring that his building will stand and provide protection against the elements, or that the street pattern of a town performs its function efficiently-is no more than a preliminary to his real creation. Only when he has provided these mechanical prerequisites, which should be incorporated without question or argument, can he begin to consider the real problem of designing a building. He is rather like the pianist who can start to interpret the music he plays only after he has mastered the technique of piano playing.


A machine is independent of its environment. It is little affected by climate and not at all by society. A person, however, is a member of a living organism that constantly reacts to its environment, changing it and being changed by it.


A plant provides a good example of the mutual interaction between a living organism and its environment. It possesses its own heat and water economies. Its respiratory heat is the result of metabolism which tends to raise its temperature, just as with animals. It perspires, and the evaporation of this perspiration leads to cooling, since every gram of water given off requires between 570 and 601) calories from the plant, depending on the air temperature. Consequently, plants exert a reaction on the microclimate of their environment and to some extent adjust their own temperature to their particular needs.


In the same way, a building is affected by its environment. The climate of the locality and the buildings around it mold the building, so that, even though social, cultural, and economic aspects are important, it owes much of its shape to these factors.


Effect of Climate on Architectural Form


Climate, in particular, produces certain easily observed effects on architectural forms. For example, the proportion of window area to wall area becomes less as one moves toward the equator. In warm areas, people shun the glare and heat of the sun, as demonstrated by the decreasing size of the windows. In the subtropical and tropical zones, more distinctive changes in architectural form occur to meet the problems caused by excessive heat. In Egypt, Iraq, India, and Pakistan, deep loggias, projecting balconies, and overhangs casting long shadows on the walls of buildings are found. Wooden or marble lattices fill large openings to subdue the glare of the sun while permitting the breeze to pass through. Such arrangements characterize the architecture of hot zones, and evoke comfort as well as aesthetic satisfaction with the visible endeavors of man to protect himself against the excessive heat. Today a great variety of devices such as sun-breakers or brise-soleil have been added to the vocabulary of architectural features in these zones.


Notice, too, how the gabled roof decreases in pitch as the rate of precipitation decreases. In Northern Europe and most districts subjected to heavy snow, gables are steep, while in the sunnier lands of the south, the pitch steadily decreases. In the hot countries of the North African coast the roofs become quite flat, in some areas providing a comfortable place to sleep. Still further south, in the tropical rainfall zone, the roofs are again steep to provide protection from the torrential downpours typical of the region.


It is worth noting that so long as the people of the humid tropical regions built their huts with reeds and grass, which allowed air to pass through the walls, the steeply pitched roof was a useful device. However, once they began to use more sophisticated materials like cement block and the common gabled roof topped with corrugated iron sheets, the houses became unbearably hot and stuffy. This kind of roof prevents the catching of draughts at the very level where they prevail, and the solid walls prevent the passage of air.


The traditional flat roof and the brise-soleil of recent tropical architecture, with its modern feel, have attracted the imagination of architects in colder regions who are continuously searching for something different and exotic. The result is that in some northern cities thoroughly inappropriate examples of architecture, with shapes suitable to an alien climate, have succeeded in making the neighboring buildings look old-fashioned without responding to the needs of the people in their climate. The temptation to create up-to-date designs which assails a modern architect prevents him from achieving the chief aim of architecture: to be functional. He forgets the environment into which he will implant his buildings because he is attracted by new and modern innovations and gadgetry. He fails to realize that form has meaning only within the context of its environment.

Environment


The techniques and equipment available to the architect today free him from nearly all material constraints. He has the run of centuries of styles and can choose his plans from every continent on earth. But he must remember that he is not building in a vacuum and placing his houses in empty space, as mere plans on a blank sheet of paper. He is introducing a new element into an environment that has existed in equilibrium for a very long time. He has responsibilities to what surrounds the site, and, if he shirks this responsibility and does violence to the environment by building without reference to it, he is committing a crime against architecture and civilization.


What constitutes the environment of a building? Briefly, it is all that surrounds the site on that part of the Earth, including the landscape, be it desert, valley, mountain, forest, seaside, or riverside, and what is above the surface with its seven zones that envelop the Earth and influence terrestial life. The zone most concerned here is the first, the atmosphere. This zone rises to an average height of 10 kilometers and reaches 20 kilometers in the Tropics. It contains the humidity on which human, animal, and plant life depend. In the six zones above the atmosphere, oxygen, ozone, and hydrogen are present in different concentrations that affect the cosmic radiation reaching the surface of the earth. In the natural order prevailing in the environment, there has always existed a continuous balanced flow of cosmic radiation within which all living organisms and even minerals have been created and evolved.


Some materials are transparent and some are opaque to the various components of this radiation. Man should be careful not to disturb the natural electromagnetic balance by improperly selecting the material he uses for his dwelling. Thus wood is a more desirable material for man's surroundings than reinforced concrete. Aesthetically, man appears to prefer wood within his dwelling in the form of furniture and structural elements, which he often describes as warm, contrary to steel or other metals, which he describes as cold. 
This psychological effect can be explained in part scientifically by the physical properties of both materials, including their heat conductivities and insulation characteristics.


These details demonstrate that the architect has a moral responsibility to consider whatever may affect the efficiency of the building and the well-being of the people whom he is housing. Besides the tangible and measurable features of the environment, there exist intangible elements, but insufficient scientific information prevents their use in town planning and architectural design. Therefore, this discussion is limited to the tangible and measurable elements of the environment, mainly the climate.


The importance of climate is clear. All living organisms depend entirely on climate for their existence and adapt themselves to this environmental influence. Plants that live in the Tropics cannot live in the Arctic, nor can arctic plants live in the Tropics, unless of course the immediate local conditions-the microclimate-are arctic, as at the top of a high equatorial mountain. Most organisms, in fact, are limited to a habitat of narrow climatic range.


Conscious Modification of the Microclimate


Yet not all species are so limited. Many animals can regulate their own internal body temperature and can maintain it at a constant value even during considerable fluctuations of the air temperature. Man has an elaborate and very sensitive mechanism involving the secretion of sweat and the distribution of blood that keeps him at about 37 °C at all times. In general, warm-blooded animals can survive wider variations than coldblooded ones. Some species manipulate their environment to produce a favorable microclimate: the tortoise does so when it hibernates for the winter. Man, too, does this in a variety of ways. He can change his microclimate by changing his clothes, building a house, burning fuel, planting trees, digging artificial lakes, and using machines to heat, cool, moisten, or dry the air around him.


A principal purpose of building is to change the microclimate. Early men built houses to keep out the elements-rain, wind, sun, and snow. Their purpose was to produce an environment favorable to their comfort and even to their survival. The microclimate on each building site is changed into several different microclimates as the result of the construction of the house itself. The microclimate adjacent to the south wall is quite different from that at the north wall, and the climates at the east and west walls are again different. Inside the building, each room has its own microclimate which is a modification of one or more of the outdoor microclimates.


Before the advent of the industrial era and mechanization, man depended on natural sources of energy and available local materials in forming his habitat according to his physiological needs. Over many centuries, people everywhere appear to have learned to interact with their climate. Climate shapes the rhythm of their lives as well as their habitat and clothes. Thus, they build houses that are more or less satisfactory in providing them with the microclimate that they need. In the warm humid lands of East Asia, the local inhabitants live in huts with flimsy, loosely woven walls that allow the slightest breeze to pass through. The people who live under the blazing sun of the desert construct houses with thick walls to insulate themselves from the heat, and with very small openings to keep out hot air and the glare of the sun.


These successful solutions to the problems of climate did not result from deliberate scientific reasoning. They grew out of countless experiments and accidents and the experience of generations of builders who continued to use what worked and rejected what did not. They were passed on in the form of traditional, rigid, and apparently arbitrary rules for selecting sites, orienting the building, and choosing the materials, building method, and design.


In any approach prescribed by tradition, it is essential that every injunction of the tradition be strictly observed. Thus, if one element were changed in a traditional building method, that change, though small, could destroy the entire validity of the building as a satisfactory solution to the local climatic problems. In this sense, both the material and the way it is used are very important. For example, if mat screens are replaced by corrugated iron or some other solid wall material, then even though the building may appear more substantial, the lack of ventilation could make the interior intolerably hot and stuffy. Modern architects have attempted to solve this problem with modern technology, for instance, introducing the vented screen-wall, using unshaded concrete or brick claustra-work to replace the objectionable solid wall. Many different examples of this can be seen in entire elevations of modern buildings in tropical zones. While such a solution is a definite improvement over the solid wall, careful investigation reveals that it is not as efficient as the humble mat screen. When the sun-breaking or brisesoleil elements of the claustra-work are not shaded, they heat up and then transmit this heat to the air flowing into the building through the claustrawork, as well as reflecting warming solar radiation into the interior.


Every substance that has formed part of a living organism will retain some of its original qualities of climatic response as long as its original structure is not destroyed or significantly modified. Wood, hair, grass, leaves, reeds, cotton, hemp, and other organic materials are sensitive to air humidity. When increased ventilation and humidity are required, matting responds to its climate by absorbing moisture from the air passing through it into the building, thereby reducing the degree of humidity in the room. In contrast, claustra-screen walls can breathe, but they do not perspire. A mat, being porous, is a poor heat conductor, and cools to below air temperature by evaporating the moisture it has captured from the air. Thus it cools the air passing through it. Furthermore, a closely woven mat with loose fibers and bristles around the ropes will intercept dust as well.


Trends in International Architecture


Changing a single item in a traditional building method will not ensure an improved response to the environment, or even an equally satisfactory one. Yet change is inevitable, and new forms and materials will be used, as has been the case throughout history. Often the convenience of modern forms and materials makes their use attractive in the short term. In the eagerness to become modern, many people in the Tropics have abandoned their traditional age-old solutions to the problems presented by the local climate and instead have adopted what is commonly labeled "international architecture," based on the use of high-technology materials such as the reinforced-concrete frame and the glass wall. But a 3 x 3-m glass wall in a building exposed to solar radiation on a warm, clear tropical day will let in approximately 2000 kilocalories per hour. To maintain the microclimate of a building thus exposed within the human comfort zone, two tons of refrigeration capacity are required. Any architect who makes a solar furnance of his building and compensates for this by installing a huge cooling machine is approaching the problem inappropriately and we can measure the inappropriateness of his attempted solution by the excess number of kilocalories he uselessly introduces into the building. Furthermore, the vast majority of the inhabitants of the Tropics are industrially underdeveloped and cannot afford the luxury of high-technology building materials or energy-intensive systems for cooling. Although traditional architecture is always evolving and will continue to absorb new materials and design concepts, the effects of any substitute material or form should be evaluated before it is adopted.


Failure to do so can only result in the loss of the very concepts that made the traditional techniques appropriate.


Only a scientific approach to the evaluation of such new developments can save the architecture of the Tropics and Subtropics. The thoughtless application of modern methods in this region is seldom successful. A thorough understanding of the climatic environment and developments based thereon is essential for appropriate solutions. Although traditional architecture was evolved intuitively over long periods, it was based primarily on scientifically valid concepts. The modern academic world of architecture does not emphasize the value of investigating and applying concepts scientifically and, therefore, has no respect for vernacular architecture. Now is the time to bridge the gap between these widely different approaches.


All traditional solutions should be evaluated scientifically before they are discarded or substitutes proposed. The phenomena of the microclimate must be analyzed and new building materials, methods, and designs must be tested until the complex relationships among buildings, microclimate, and human beings are fully understood. Fortunately, agriculture is perhaps even more intimately affected by the microclimate than architecture, and agricultural scientists have long made careful observations of the climate near the ground and in small localities. Their findings are available to those interested in tropical and subtropical architecture.


Another science to which architecture is indebted is aerodynamics. The methods of investigating airflow around the wings and bodies of aircraft are now being used to study airflow through, over, and around buildings. Scaled and full-size models can be tested in wind tunnels to determine the effect of the size, location, and arrangement of openings on the airflow through individual buildings, as well as the nature of wind patterns and forces between groups of buildings.


Today more attention is being given to the relationship between climate and architecture, and several building research organizations are beginning to examine this relationship.


Various disciplines, including aerodynamics and meteorology, provide an impressive stock of facts that are extremely useful to architecture. The architect is responsible for interpreting these facts and applying them to his designs. In this respect, he resembles the attending physician, who, though using the expertise of the physiologist, radiologist, or bacteriologist, is the only person who can actually undertake the treatment of a case.

miércoles, 14 de septiembre de 2011

Vivienda Urbana Popular de Adobe en Cusco, Perú. Arquitectura Inca


En nuestra primera entrada oficial, queremos compartirles información sobre la arquitectura vernacula de los Incas, especificamente en la Ciudad del Cusco.

La Provincia del Cusco y la Ciudad del Cusco se encuentran en Perú. Sus fronteras: al norte, Ecuador y Colombia. Al sur, Chile y Bolivia. Al oeste,  del Océano Pacífico. Al este, Brasil.

Su población es de 25 millones de habitantes, 70% de los cuales constituyen la población urbana y 30% la población rural. 

Su Superficie es de  1, 285,216 km2 y su densidad es de 16.8 habitantes/km2.

Capital: Lima

Región Geográfica: la costa, la montaña y el bosque.

La ciudad de Cusco.

Situación: Valle del Huatanay
Población: 300,000 habitantes
Altitud: 3,280 metros sobre el nivel del mar
Clima: Seco
Temperatura media: 15 a 17 grados centígrados
Superficie: 22,000 km2

Condiciones Geológicas.
La ciudad del Cusco, se localiza en un medio geográfico montañoso cuyas condiciones son propicias a los fenómenos geodinámicos, la ciudad padece periódicamente las consecuencias de desastres naturales (sismos, deslizamientos y hundimientos de tierra). La ciudad se desarrolló en un valle que tiene forma de “hondonada”, emplazamiento de un antiguo lago. Está rodeada por dos cadenas de montañas. El valle de Huatanay tiene aproximadamente 20 kilomentros de largo y se termina en la localidad de la Angostura.
Los principales ríos que atraviesan el valle son: el Tullumayu, el Saphy, el Qenqomayo, el Chunchulmayo y el Huencaro, todos afluentes del Huatanay, que recorren el valle de occidente a oriente y han contribuido en gran medida a modelar su perfil topográfico.

Clima

La ciudad del Cusco cuenta con un clima semiseco y frío. La temperatura media anual máxima es 19,6°C y la mínima de 4,2°C La temporada de lluvias se inicia en noviembre y concluye en marzo, época en la que las montañas se cubren de verde. Entre junio y julio son comunes las "heladas" (frío intenso) en las que se han reportado nevadas muy ocasionales.

Materiales:

El adobe, o bloque de tierra sin cocer moldeada en forma de ladrillo y secada al sol, es un material de construcción muy presente en la historia de las civilizaciones peruanas. Fue ampliamente utilizado para la realización de conjuntos urbanos que pusieron de manifiesto sus cualidades. Esas construcciones de adobe atravesaron los siglos, resistieron la época moderna y el impacto devastador de la industria de la construcción que generalizó el empleo del concreto. También resistieron a los organismos gubernamentales que se niegan a reconocer las cualidades de este material milenario y quisieran darle un carácter ilegal.

Sistemas de construcción

Se caracterizan por su simplicidad. Los materiales y elementos que se utilizan para construir una casa son tradicionales y poco diversificados. Los principales son los siguientes: el adobe, el eucalipto, la teja de arcilla cocida de forma acanalada, la caña, el yeso, la piedra y la paja.
La casa es de dos pisos y una sola crujía y el techo es inclinado, de una o dos aguas.
La planta baja tiene una altura media de 2.50 m y el piso superior, de 2.30 a 2.40 m. en la parte más alta del tejado la casa puede alcanzar unos 7 m en promedio.




Muros.

Están hechos de ladrillos de adobe (tierra y paja) de dimensiones variables (50 x 24 x 15 cm ó 40 x 19 x 10 cm), pegados con tierra. Se observa un desconocimiento casi total de los criterios elementales de concepción de estructuras. No existe ningún refuerzo vertical ni horizontal y el aparejo de la mampostería de adobe es deficiente.



Vigas de entrepiso.

Son de eucalipto, redondas, de 15 a 20 cm de diámetro, y se colocan directamente sobre el muro de adobe, mediando de una a otra entre 80 cm y 1 m. El piso o suelo del primer nivel se construye con viguetas de madera. El cielo raso de la planta baja se realiza con carrizo partido unidoso con alambre al entrepiso y luego revestida con yeso.

Dinteles, puertas y ventanas.

Son de eucalipto, de 15 a 18 cm de diámetro. Los apoyos en cada extremo son de 50 cm como máximo. Existe una tendencia acentuada a hacer aperturas muy largas con apoyos cortos, lo que termina por sobrecargar el muro.
Las puertas y ventanas son de madera de mediana calidad. Para montar las puertas se utiliza la técnica del “encajonado”. El techo es en pendiente de 15 a 18º, y de 23º cuando es de dos aguas. La cubierta es de tejas acanaladas de arcilla cocida, colocadas sobre un mortero de tierra y paja, sostenido a su vez por una capa de cañas unidas y clavadas a la estructura de madera. El armazón es de concepción sencilla con vigas separadas unas de otras por 80 cm a 1m y colocadas directamente en la pared

Formas.

El conjunto de casas estan formados a partir de manzanas cuadradas, semi uniformes, en donde unos muros rodeaban las viviendas y las dependencias dispuestas en torno a un patio. Esta disposicion de las manzanas era la que ayudaba a configurar el tejido urbano de la region.  Con la llegada de los españoles, las formas que los conquistadores buscaban en sus casas y sus ciudades eran muy similares a las formas en que los incas configuraban su ciudad: el uso del patio que estaba rodeado por las casas, las manzanas y las calles.



Las formas de las casas, dependencias y edificaciones estaban influenciadas por la topografía del lugar. En la provincia del Cusco y en la ciudad de Cusco el terreno  las casas estaban distribuidas de forma en que las familias con mas recursos economicos puedan vivir cerca de las carreteras, rios y demas servicios, y por el otro lado, las familias de escasos recursos solian vivir en las partes mas altas de las ciudades, alejados de todo.


Las casas variaban en su tipología, sin embargo todas mantenían un esquema parecido con respecto a las otras. Forma cuadrada semi-uniforme. Una casa con su dependencia, un patio y muros que rodeaban la casa y el patio.

La única variante era que en algunos tipos, como por ejemplo en el tipo 2 las casas estaban en la parte posterior del terreno, ademas de que sus techos eran de una sola agua. Por el otro lado, en los tipos 3, las casas estaban en la parte delantera del terreno y sus techos eran de dos aguas.

Características de la arquitectura inca:
·         Austeridad (sencillez en la decoración del exterior/interior)
·         Monumentalidad (solidez y muros macizos)
·         Simetría (siguen un mismo eje)

Tradiciones:

Las tradiciones de la cultura inca datan desde la época pre inca, el imperio inca y la llegada de los españoles. De la época pre incas se tomaron las formas prehispánicas de las culturas cercanas a Cusco, usando bloques de piedra o adobe que utilizaban para la creación de sus casas. El esquema de la casa-patio y sus muros que la rodean viene de esa época, y siguió siendo utilizada por el imperio inca y aun después de la llegada de los españoles. En la época colonial las casas y dependencias sufrieron algunos cambios en el detalle de sus fachadas y sus interiores, pero sin embargo el esquema arquitectónico de la ciudad no sufrió muchos cambios.



Los habitantes de la ciudad del Cusco tienen una influencia directa/indirecta con el medio rural. Una de las características es que existen muchos migrantes que llevan la cultura de la ciudad a otros lados. La familia, que constituía una unidad de producción cuando su actividad era sobre todo agrícola, se transforma en la ciudad en una unidad de consumo. El jefe de familia se ve obligado a trabajar en el sector de servicios (empleado de hotel, comerciante informal, etc.), que por lo general sólo ofrece un sueldo mínimo e inestable.

Bibliografía

AGURTO CALVO, Santiago. Estudios acerca de la Construcción, Arquitectura y Planificación Inca. Ed. Perú Graf S.A. Lima-Perú, 1987.

Ricciu, Francesco. La civilización de los incas. Novara, Italia. (1989)

Robertson, Donald .Pre-columbian Architecture.  Nueva York, EUA : George Braziller, 1963, c1963


Imágenes de maqueta de vivienda popular Inca.